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The paper investigates the viability of using moving mesh methods to simulate
travelling wave solutions of Fisher's equation. Results are presented that illustrate
the weaknesses in moving mesh methods based on equidistribution of some popular
monitor functions. It is shown that knowledge of the differential equation and the
travelling wave solution may be used to construct a monitor function that yields
accurate results with suitably chosen moving mesh methods. A comparison is made
between a moving mesh partial differential equation and a moving mesh differential-
algebraic equation for the evolution in timeg 1998 Academic Press

1. INTRODUCTION

1.1. Fisher’'s Equation

R. A. Fisher [7] introduced a nonlinear parabolic partial differential equation on
infinite spatial domain to model the simultaneous growth and spread of a dominant g
This equation—now popularly known as Fisher’'s equation—may be written for one sp
dimension as

au 9%

E = ﬁ—i-u(l—u), XE(—O0,00), t > O, (11)
XIirp uix,t) =1, Xlim ux,t) =0, (1.2)
u(x, 0) = up(x), X € (—00, 00). (1.3)

If up(x) € [0, 1] onR it has been shown by Kolmogoret al.[17] that for everyc > 2 there
exists a travelling wave solution to (1.1)—(1.3) of wave speethat is, a solution of the
form u(x, t) =V (x — ct) for some functionV, of the scalar variablé = x — ct. Each of
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these solutions satisfi®g (¢) € [0, 1] for all £, and no such solutions exist foe [0, 2). If
Uo(X) is a positive function that satisfies the boundary conditions (1.2,and if

Uo(X) ~ e P* asx — oo, (1.4)

then, ag — oo, u will evolve to a travelling wave with speed) [11], where

B+3i, p<1,
cp) = {2’ g1 (1.5)

The propagation speed of the wave has the minimum vale@ only if the initial
distribution amplitude falls off sufficiently rapidly witlk asx — oo; otherwise a speed
higher than the minimum can be maintained indefinitely. Note that the speed of the wa
determined by the behaviour of the initial dataxas- co.

The computational representation of the evolving travelling wave solution to (1.1)—(
is a challenging numerical problem. Numerical schemes may lead to erroneous rest
they do not explicitly take into account the delicate solution dependence on the in
distribution behaviour at infinity. To perform a computational solution to (1.1)—(1.3) it
normal to replace the pure Cauchy problem by an initial and boundary value problem ol
finite spatial domainy, , xg], with approximate boundary conditions imposedxat x_
andx = xr. Gazdag and Canosa [8] have produced a numerical solution of (1.1)—(1.3
a finite domain and they have demonstrated that if boundary conditions of the form (
are imposed ax = X, andx = Xg, the solution evolves towards the travelling wave witl
minimum speed = 2. They have shown that if the initial condition ir.[, Xg] is given
by a travelling wave profile of speed greater tltan 2, the time required to evolve to the
minimum wave speed profile is related to the right-hand cutoff poiatxg.

Hagstrom and Keller [11] have shown that travelling wave solutions with speeds gre
thanc =2 can be accurately represented on a finite domain. The key to their success |
choice of boundary conditions at the cutoff points, particularly atxg. An asymptotic
representation of the boundary condition is imposed atxg, and this condition takes
account of the initial data in the discarded regios Xg. A similar approach is used
by Hagstrom and Keller [11] to construct an asymptotic boundary condition at left-he
boundaryx = x_. It is shown, however, that the solution is much less sensitive to t
imposed condition at = x, , and the authors obtain accurate results usiixg, t) = 1 and
ux (X, t)=0fort > 0. Itis the initial data in the right tail that determines the wave spee
and itis the right-hand boundary condition that is important. The conditigg, t) = const
leads to good results when the speed of the coordinate system is the same as the sg
the final travelling wave. This speed might not be known in a more complicated probl
and solution in a fixed reference frame with the appropriate asymptotic conditica ak
is appropriate.

The stability of the travelling wave and the sensitivity of the solution to the bound:
condition ahead of the wave have been discussed by many authors (see, for exa
[3, 9-11, 16, 17]). It is readily shown that the equilibrium solutiens 0 andu=1 of
Eqg. (1.1) are unstable and stable, respectively, to small disturbances. It has been s
(see, for example, [8-10]) that all travelling waves are stable to small perturbation:
compact support, but they are unstable to small perturbations of infinite support. We
comment further on the stability and sensitivity of the travelling wave in Section 4.
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1.2. Objectives

The first objective in this work is to investigate the viability of moving mesh finit
difference methods for the approximate solution of the challenging problem that is outli
in the preceding section. The study was motivated by a comment in Li, Petzold, and
[19] to the effect that moving mesh methods are not recommended for reaction—diffu:
problems in which the diffusion termis much smaller than the reaction term. They considt
a scaled Fisher’s equation in the form

gu 02U
at — ax2
wherep is a (large) positive constant. The initial and boundary conditions are those gi

by (1.2)—(1.3). It is readily verified that (1.6) has a travelling wave solution satisfyi
(1.2)—(1.3) of the form

+ pu(l—u), X e (—00,0), (1.6)

ux,t) = a.7)

1 2
<1+exp(\/§x - %t)) ’
with wave speed =5,/p/6. The minimum wave speed of (1.6) is, of coursg;® and
the work of Gazdag and Canosa [8] indicates that the numerical solution of (1.6) on a f
domain, with initial condition given by (1.7), will evolve to the wave of minimum spee
unless great care is taken with the right-hand boundary conditioet &i. [19] avoided
the boundary condition problem by solving on the domain [0, 1] with boundary conditic
given by the exact solution. They examined the effectiveness of moving mesh metho
simulating the profile accurately and in capturing the correct wave speed. The poor re
obtained in the casp = 10* led them to conclude that moving mesh methods were n
recommended for this type of situation.

Our aim is to follow the approach of It al.[19] and to seek improved results using &
method based on equidistribution of a monitor function that is constructed from the feat
of the solution being computed. In adaptive approximation methods it is essential that
be taken in selecting the monitor function for the equidistribution process, as demonstt
in the function approximation problem by Carey and Dinh [4]. We show initially th:
moving mesh methods based on the familiar arc-length or curvature monitor functi
[1, 20, 23] yield inaccurate results. Good numerical solutions that are free of oscillation
then produced using our specially constructed monitor function.

A second objective is to make a comparison between the moving mesh partial differe
equation (MMPDE) method proposed by Huang, Ren, and Russell [13] and the moving r
differential-algebraic equation (MMDAE) method proposed by Mulholland, Qiu, and Slo
[20] for this difficult problem. It emerges that the computed solution is very sensitive to
choice of relaxation parameter, in the MMPDE approach. No such choice is necessa
with the MMDAE method. The DAE that is used is a stable, index 1 system [5, 20, 22]. 1
index 1 property is established in the Appendix for a simple choice of monitor functior
the equidistribution process.

2. MOVING MESH METHODS

Moving mesh methods have been used widely during the last few years for solving ti
dependent partial differential equations (PDESs). Fairly robust methods have been pres
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for problems in one space dimension (see, for example, [6, 13, 20] and references the
and much is currently being done in developing methods for problems in two space
mensions [15]. These methods move the mesh points as time evolves, with the m
designed to minimise some measure of the computational error. In this work we make
of two moving mesh methods that adapt the mesh to the evolving computational solt
by equidistributing some function uniformly over the domain of the problem at specif
values of time.

To effect a numerical solution of Eqg. (1.6), the equation is recast in terms of indepen
variables; andt, wheren is defined by a one-to-one coordinate transformation of the forr

X =x(n,1). (2.1)

This map relates the evenly spaced nodes
ni=-1+—, i=01...,N, (2.2)

in [—1, 1] to the nodes$x; }iN=o in [X_, Xg], where
XL = Xo(t) < X1 (t) < --- < xn(t) =xg VL =>0.

For moving mesh computations it is convenient to write the differential equation (1.6
the Lagrangian form [20]

0u 92u

U—X—

= 3 Trua-w, (2.3)

in which u andx denote derivatives with held constant. We seek approximations to th
time-dependent vectori }L., and {u; Lo, wherex; = x; (t) =X (i, t) andu; =u(x;, t).
A semi-discrete version of (2.3) is

o Uipi— Ui 2 (Ui+1_ui CUi—Uig

1 — i (1— 2.4
Ui — X v Xi—Xi_1>+pUI( u) (2.4)

i =
Xit1—Xi—1 Xit1—Xi—1

fori=1,2,...,N—1. As stated in the preceding section, the boundary conditions
given by the exact solution (1.7) at= X, andx = Xg, and this provides the values 0§
anduy.

To adapt the mesh to the solution we follow Huatgl.[13] in using the equidistribution
principle (EP)

X(n,t) XR
/ M(s,t)ds= 77/ M(s, t)ds, (2.5)
XL XL

whereM (>0) denotes the monitor function. Differentiation of (2.5) with respect ¢ives
the differential form of the EP,

a a
n an
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and this has been used by Huat@l.[13] to derive a set of moving mesh PDEs (MMPDES)
The member of this set that we make use of here is MMPDEG6 which is thought to be
most accurate of these [14],

92X 19 9
OX_ 20 (mZ). 2.7)
an? 79 an

inwhicht is a small positive time relaxation parameterin the range G« 1. Using second-
order central differences on the grid (2.2) we obtain the semi-discrete mesh equations

Xi—1— 2% + Xit1 = —%[Miﬂ/z(xwl — %) — Mi_1/2(% — Xi-1)] (2.8)
fori =1,2,...,N—1, with
Xo(t) =x. and Xn(t) = Xg. (2.9)
In EqQ. (2.8),I\7Ii+1/2 is a smoothed monitor function defined as in [13, 20] by

i+ |k—i]
-2 it —p M 12 (557)

i+1/2 = itp k=]
ici-p(751)

: (2.10)

whereM,; 11, approximates the monitorfunction]}a(b(i + Xi+1), y isapositive real number,
andp is a nonnegative integer. In all computations presented in this work we used the f
valuesy =2 and p=3. The moving mesh solution of (1.6) by means of MMPDES c
Huang, Ren, and Russell [13] is given by an approximate time integration of systems (
and (2.8) subject to boundary conditions (2.9), wigranduy given by the exact solution
(1.7) atx = x. andx = Xg.

One of our objectives is to compare the effectiveness of MMPDEG against that of
moving mesh differential-algebraic equation (MMDAE) approach of Mulholland, Qiu, a
Sloan [20]. In the MMDAE method, system (2.8) is replaced by the algebraic equation

Mij1o(6ii1 —X) — Mi_12(6 —%_1) =0, i=1,2...,N-1  (2.11)

The MMDAE consists of systems (2.4) and (2.11), with boundary conditions as before.
MMDAE imposes the approximate equidistribution condition (2.11) at each instant of ti
in the time discretisation, whilst the MMPDE contains a paramettrat represents the
time taken to reach equidistribution from some initial state.

The time integrations for MMPDES®G (systems (2.4) and (2.8)) and MMDAE (systems (2
and (2.11)) were performed using the stiff ODE/DAE solver DASSL [21] wATrOL =
10°%, RTOL=107°%, and N =50. DASSL is an ideal integrator for index 0 and index :
ODE/DAE systems [2]. The initial values @ }iN:‘l1 were obtained by applying the equidis-
tribution condition (2.11) to the initial data function. Finally, in all of the computations w
setx, = —0.2 andxg =0.8.
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3. NUMERICAL RESULTS

3.1. Arc-Length and Curvature Monitor Functions

The proper choice of monitor function for a specified problem is still an open question.
analysis of the optimality of meshes and monitor functions for the function approximat
problem has been given by Carey and Dinh [4]. Much of the recent work on the solu
of PDEs using adaptive methods based on equidistribution have favoured the arc-le
monitor function (see, for example, [13, 14, 19, 20]). For this choice, the quavitiy
(2.5) takes the form

M(x,t) = v/1+ a2(du/3x)2, (3.1)

and the discrete approximatidn 1> that appears in (2.10) is

2
Uit+1 — U
=/l+a2 22— 3.2
\/+a <Xi+1—xi> (.2

The user-specified parametemeasures the extent to which the solution slope influenc
mesh location. In the work presented heris given the value 2.

Figure 1 shows solutions of Fisher's equatiort at5 x 1074, computed by means of
MMPDEG6 and the arc-length monitor function. The objective here is to determine h
the choice of the parameterin (2.8) influences the quality of the generated mesh an
consequently, the accuracy of the computed solution. The use of a nonzero valbasf
the effect of introducing temporal smoothing in the computed solution [13]. Figures
1b, and 1c show the computed mesh and solution given by the choieé§-3, 10-°, and
1077, respectively. Note that at= 10" andr = 10~° the nodes are concentrated at th
tail of the travelling wave. For these valuestgfnodal density is very low within the wave
and in the region of large curvature at the front of the wave, and, not surprisingly, tr
is evidence of significant computational error at the wave front. The mesh improves
diminishes, and at = 10~’ the nodal distribution appears to be much better. Itis clear fro
the displays in Fig. 1 that the computed mesh is sensitive to the choicendhe moving
mesh PDE.

A further comment should be made on the user-specified paramedacky that appear
in Egs. (2.7) and (3.1), respectively. As intimated immediately after the points of f
occurrencer is atime relaxation parameter amdneasures the extent to which the solutior
slope influences mesh location. The appropriate values of the parameters are related
scale of the problem. If the independent variablesdt in Eq. (1.6) are re-scaled by means
of the transformation

M,

NI

t:=p4, x:=p Y%

the equation reduces to Eq. (1.1), and the appropriate valuearadx are altered accord-
ingly. For example, an expanded version of Fig. 1c is obtained if Eq. (1.1) is integre
to t =5 over the spatial domair-20< x < 80, with the arc-length monitor function in
MMPDEG6. The values oiN, ATOL, and RTOL are identical to those used in produc:
ing Fig. 1c, butr and« take the re-scaled values T0(p x 10~7) and 200(pY? x 2),
respectively.

The objective in the numerical experiments that are illustrated in Fig. 2 is to detern
whether an accurate solution can be computed up=t@.5 x 10~2 using MMPDEG6 with
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FIG. 1. Numerical solutions of Fisher’s equation (1.6} at5 x 10, computed by MMPDEG6 and the arc-
length monitor function: (a) solution with=10"3; (b) solution witht = 10-%; (c) solution witht =107,
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FIG. 2. Numerical solutions of Fisher’s equation (1.6} at 2.5 x 10-%: (a) solution computed by MMPDEG6
and arc-length monitor function with=10""; (b) by MMDAE and arc-length monitor function. The continuous
line gives the exact solution.

7 =10"" and an arc-length monitor function. Figure 2a shows that the computed solu
for the travelling wave is moving faster than the exact solution; the maximum pointw
error isO(1) at the wave front. The experiment was repeated using MMDAE with ai
length monitor function, and the results are displayed in Fig. 2b. Analogous results t
been presented by let al.[19], and the obvious conclusion is that moving mesh metho
based on the arc-length monitor function are not suitable for computational solutior
Fisher’s equation. It can be seen that the solutions given by MMDAE are similar, in te
of accuracy, to those given by MMPDEG with=10"". The proximity of the results given

by MMDAE and MMPDES6 withr = 10~/ is anticipated. We shall see later, however, thz
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MMPDEG with r = 10~ produces a stiffer system than MMDAE, and this has associat
disadvantages in terms of execution time.

Another commonly used monitor function is one in which the first derivative in (3.1)
replaced by the second derivative [1, 23]. This curvature monitor function is given by

s2u\ 2\ Y
M(X,t) = <1+a2(ﬁ) ) , (3-3)

4 2 Ui+2 — Ui Uit1 — Ui—g 2
Mivie =1+ a [Xi+l = Xi (Xi+2 — X - Xit1— Xi1>:| '
At nodes close tx; andxg the expression (3.4) has to be modified as has the smooth
operation defined by (2.10). As in the case of arc-length, the paramistset to the value 2,
and it should be noted thatwill be related to the scale of the problem.

Figure 3 shows solutions of Fisher's equatiort at5 x 1074, computed by means of
MMPDES with the curvature monitor function. Solutions givenroy 10-3, 107, and 10”7
are displayed in Figs. 3a, 3b, and 3c, respectively. The results show the same weakr
that were discussed in relation to Fig. 1. The mesh improvesdasinishes, with a good
nodal distribution at = 10~7 and overconcentration of nodes behind the wave at the larg
values oft. The computed mesh is sensitive to the choice.of

Figure 4 shows the solution computed at the later time2.5 x 103, by means of
MMPDES6 with the curvature monitor function and=10"". In this case the solution is
oscillatory at the front of the wave, and again it seems that the monitor function might
be suitable. The MMDAE produces similar results.

with

(3.4)

3.2. Modified Monitor Function

As indicated by Hagstrom and Keller [11] and by Gazdag and Canosa [8], the numel
difficulties that arise in the numerical simulation of the travelling wave for Fisher’s equat
have their source at the the front of the wave. Hagstrom and Keller [11] have shown that ¢
care is needed in formulation of boundary conditiong at xg, and Gazdag and Canosa
[8] have shown that the computational solution is unstable to roundoff errors introdu
at the wave front. Canosa [3] has also shown that all travelling waves are stable to |
perturbations, but linearly unstable to perturbations of infinite extent. In Section 4 we
an approach similar to that adopted by Canosa [3] to show that a central difference sol
on an even grid of spacirfyis stable to local perturbations.df (t) denotes a perturbation
about the solutiow; (t), where the subscrigtindicates the locatior; = x_ + jh, it may
be shown that the rate of decay of the perturbation is larger in regions wherd than itis
inregions wher¢w; | <« 1. This suggests that truncation errors introduced at the front of t
wave will be a stronger source of inaccuracy than analogous truncation errors introduc
the rear of the wave. The implication of this in the present context is that a monitor funct
should be designed to give a high nodal density and, therefore, high accuracy at the
front wherew; ~ 0.

Our objectives in terms of monitor function design have led us to the choice

5 \ 2112
M(x,t) = 1+a2(1—u)2+ﬁ2(a—u)2<%>] , (3.5)
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FIG.3. Numerical solutions of Fisher’s equation (1.6} at5 x 10~*, computed by MMPDESG and curvature
monitor function: (a) solution with = 10-3; (b) solution witht = 107°; (c) solution witht = 107"
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FIG.4. Numerical solution of Fisher's equation (1.6 at 2.5 x 10~%, computed by MMPDES6 and curvature
monitor function withr = 10~7. The continuous line denotes the exact solution.

where,a, 8, anda are user-specified parameters. In the computations that are prese
in this section we used the values= 1.5, 8 = 0.1, anda = 1.015. The term(a — u)? that
appears as a multiplying factor with the second spatial derivative takes values cldxfo 1
and Q01% at the front and at the rear of the wave, respectively. The choice of a vaue «
close to unity thus ensures that the high curvature region at the front of the wave is g
more weight than the corresponding region at the back of the wave. Similarly, the t
(1—u)?is also designed to give greater weight at the wave front, and it followsMhiat
larger at the leading high curvature region than it is at the trailing high curvature regi
This has the effect of increasing the nodal density at the front relative to that at the b
For this choice of monitor function the ideal valuesxoAnd 8 will depend on the scale of
the problem.

Figure 5 shows solutions of Fisher’s equation at several valugcomputed by means
of MMDAE and the monitor function (3.5). Note the high nodal density at the wave frc
and the high accuracy up to tinie= 2.5 x 102, At this time the maximum pointwise error
is 9.25 x 10°2, whereas the corresponding error using the arc-length monitor functior
o).

The objective in the numerical experiments that are illustrated in Fig. 6 is to deterrr
the influence of the choice af on the accuracy achieved by MMPDEG. The displays i
Figs. 6a, 6b, and 6¢ show the solutions produced by MMPDE®6 and monitor function (:
with T =1073, 1075, and 107, respectively. Withr = 10~2 andr = 10~° the region of high
nodal density moves at a speed that is lower than the travelling wave spe€d Bretrors
are produced at the wave front. The situation is improved when the relaxation paramet
is reduced to 107, but thel ., error att =2.5 x 102 is 4.29 x 1072, which is larger than
that given by the MMDAE. At = 10/, the error in the solution computedtat 2.5x 103
is not reduced iN is increased beyond the valile= 50. However, a reduction in the value
of r at N =50 gives a reduction in the, error. Numerical experiments that are describe
by the authors in [22] demonstrate that MMPDEG witk= 10~7 will be a much stiffer
system than MMDAE. The execution time for MMDAE is approximately 86% of that ft
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FIG. 5. Numerical solutions of Fisher's equation (1.6) at tintes5x 104,t=1x 10°,t=15x 1073,

t=2x 1073, andt = 2.5 x 103, computed by MMDAE and the modified monitor function (3.5). The continuou
lines represent the exact solutions at the corresponding times.

MMPDESG in computing the results ait= 2.5 x 10~3 that are displayed in Fig. 5 and Fig. 6¢.
The comparison of execution times would be even more favourable to MMDAE if we t
integrated MMDAE to give arh ., error of 429 x 102 att =2.5x 10°3.

Figure 7 gives the numerical solutions of Fisher’s equation at the same valtiess of
those in Fig. 5, computed by the method of lines on an evenly spaced grid\witB0.
The time integration was also performed using DASSL [21] with the same valuWeBaif
andRTOLas those used in MMDAE and MMPDE. It shows that the maximum pointwi:
error isO(1). With the even grid, it is necessary to incre&seo 300 to obtain an accuracy
att =2.5 x 1072 that is comparable with that of the MMDAE wit = 50. TheL ., error
given by the method of lines &t=2.5 x 1073 is 9.34 x 10~ with N =300, and the CPU
time is double that of the MMDAE wittN = 50.

4. STABILITY OF COMPUTED SOLUTION OF (1.6)

The travelling wave with speedlis a solution of the fornu(x, t) =V (x — ct), for some

function Vv of the scalar variablé = x — ct. It is readily seen tha¥ is a solution of the
boundary value problem

d2v  dv
d—§2+C¥~|—pV(1—V)=0, (4.1)
Jim VE) =1, lim VE) =0. (4.2)

To examine the stability of the travelling wave solution we return to Eq. (1.6) and write t
equation in a reference frame that is moving in the positigirection with speed. The
transformation is effected by casting the equation in terms of independent varigliles (
where¢ = x — ct. If u(x, t) = v(§, t) thenv satisfies the equation

v % 9

5t = 8—.$§2+C£+pv(l_v)’ (4.3)
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Numerical solutions of Fisher's equation (1.6) at times5x 104, t=1x 1073, t=15x 1073,
t=2x 103 andt =25 x 103, computed by the method of lines on an even mesh Nita 50.

with boundary conditions similar to (4.2). A comparison of (4.1) and (4.3) shows that
travelling wave is a steady-state solution of (4.3).
To perform a linear stability analysis we write

v(E, 1) =V(E) + (1), (4.4)
where squares of are sufficiently small to be ignored. The linearisation abdiughows
thatn satisfies

o _ 9%

n
iR +p(1—2V)n,

(4.5)
and, since we are interested in local perturbations, we impose the boundary condition
n(xL,t) =0.

(4.6)
Here we have userr = —x. =L for convenience. Equation (4.5) is converted to sel
adjoint form [3] by means of the transformatigug, t) = exp(—c£/2) f(£,t), and f is a
solution of

2 2

212252+(—2+p—2pV>f 4.7)
satisfying boundary conditions (4.6). Note thatas- oo, n must decay to zero at least as
O(e%), so f =e%/?y will decay exponentially ag| — oo.

A phase plane analysis of (4.1) and (4.2) shows that there is a unique travelling v
solution for each value af satisfyingc > 2, /p [10]. Furthermore, the wave profile is given
by the solution on the trajectory that connects the saddle poht=afl, dV/dé = 0 with

the stable node &t =0, dV/dé = 0. The travelling waves are identical to travelling wave

solutions of the Korteweg—de Vries—Burgers (KdVB) equation when dissipation domin:
dispersion. The KdVB equation is Burgers’ equation with a dispersive term added in

739
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form of a third-order spatial derivative; it is found useful, for example, in describing plas|
shocks [3, 16].
Noting thatc > 2, /p we write (4.7) as

af  92f
— = 1—-s>—2V)f, 4.8
ot~ ag2 +p(l-s ) (4.8)

weres> 1. To examine the stability of a numerical solution we consider an even ¢

with nodes{&;}{", wheregj = —L + jh andh=2L /(N + 1). If fj(=f;(t)) denotes the
approximation até;, t) the set of semi-discrete equations is

h2f; = fi_1— [2— ph?(1—s? = 2V})] fj + fjo1, j=1,2,...N, (4.9)
with
fo= fnp1 = 0. (4.10)

In the analysis we use a simplified model in whigh is given by the exact solution

(see (1.7)):
-2
V= |:1 + exp(@&)} . (4.11)

System (4.9)—(4.10) may be written in matrix form as

f = Af, (4.12)
wheref = [fq, fo, ..., fn]T and
A= h—lztridiag{l, —(2+4q)), 1}, (4.13)
with
qj = ph?(s? +2Vv; — 1). (4.14)

SinceV; € (0, 1) ands? > 1 it follows from Gerschgorin’s theorem that the eigenvalues
the symmetric matriXA are all real and negative. Henthl| decays exponentially with time
and the system is linearly stable to local disturbances.

Table | shows the eigenvaluggy ) ;, of A corresponding tiN =9, 19, and 29. In the
calculation we have used the valyes- 10%, L = % ands = 5/2./6 that correspond to the
travelling wave (1.7). The eigenvalues are ordered such that

)\N <)\N—1 < - <)\1<0. (415)

TABLE |
Eigenvalues of Matrix A in (4.12) with p=10%, s=5/2+/6, andL = %

N AN AN-1 AN-2 A3 A2 Al
9 —2.08x 10 —2.06x 10 —2.05x 10 cee —6.80x 107 —5.56x 107 —4.55x 17
19 —2.20x 10¢ —2.18x 10* —2.15x 10* cee —7.71x 10 —-582x 10 —459x 1%

29 -240x10* -238x10* —-235x10* ... —7.89x10® -586x10® —4.60x1C
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If Ax® =xx® k=1,2 ..., N, then the solution of (4.12) is

N
f(t) = Z cx et (4.16)
k=1
where{c )}k, are given by the initial conditions di
With an initial perturbatiors confined to node;, we may writef,(0) =€ and f;(0) =0
for j #1. The solution (4.16) takes the form

N
ft) =€) xxOen, (4.17)
k1
wherex® =[x x®_ ... x¥1T and|x®|, = 1. The computed results show txdt ~ 0

forallkexcepk =N, N—1, ..., N—n,wheren ~ O(N/3). It follows that the perturbation
atx; yields a solution that is a sum over thet 1 most rapidly decaying exponentials in
(4.16). Similarly, a perturbation &y yields a solution that is a sum over thet+ 1 most
slowly decaying exponentials in (4.16). The rate of decay of a perturbation on nodal va
at the back of the wave is thus greater than that for a perturbation on nodal values at the
of the wave. Table | shows that fpr= 10, the fastest and slowest decaying modes ha:
decay rates of order exp@.4 x 10°t) and exp{4.6 x 10°t), respectively. This seems to
suggest that disturbances ngaor nearxy will decay with extreme rapidity. However, the
time scale of a typical numerical experiment is 2.5 x 10~3, and the decay factors over
this time scale neax; andxy are, respectively, exp(60) and exp{1.15). It follows that
perturbations at the rear of the wave are insignificant, relative to analogous perturbatio
the wave front.

The eigenvalue computations described above were also performed using a discreti:
of (4.8) on a grid that was generated adaptively. The grid was formed by adapting tc
exact solutiorV (¢) of (4.1) and (4.2) by equidistribution of the monitor function (3.5). Th
adaptive computation yields the same qualitative effects as the uniform grid computa
The convergence @f; to the value-460 (see Table I) is faster in the adaptive case. Also,
value of the ratio.y /A, for a particular value oN in the uniform grid case is attained at a
much lower value oN in the adaptive case. For example, the valugngfi1 in the uniform
grid case withN = 299 is comparable with the value in the adaptive grid caseMith 49.

It is of interest to note how the stability on the finite domain differs from that on tl
infinite domain. Note, initially, thatl V/dé = V; is a solution of

LV: =0, (4.18)

where £ denotes the linear differential operator given by the right-hand side of (4.
FurthermoreV: decays exponentially to zero g5 — oo and it follows thatC has a zero
eigenvalue for the pure Cauchy problem. A perturbatidf, that is a multiple ofV; will
therefore continue to exist with no decay or growth, and since

V(€4 €)= V() +€V: () + O(e?), (4.19)

it follows that small perturbations of this type may only result in a phase shift of the origi
travelling wave. The finite domain problem does not exhibit this property siagé0
at& ==L, but numerical approximations over a large finite domain may be expectec
have a tendency to suffer phase errors that arise from perturbations which have a no
projection in the space spanned by the discretised representatbn of
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To support this expectation, one should note th#Yitlenotes the second-order centra
difference approximation t& and if (V;)n denotes the vectddV/d& (£))}}5, then the
residualCn (Ve)n is 0O(h?) ash — 0 for a fixed value of. For sufficiently smalh, and
sufficiently largeL, (V)n is a close approximation to an eigenvecto’gfcorresponding
to the nearly zero eigenvalue. The tendencf eV ), to zero ad — 0 is readily verified
numerically.

The eigenvalues af, were computed at several valuebiith p = 1 andL = 25, and it
was noted that the eigenvalues are all real and negatesiSufficiently large. The negative
eigenvalue of smallest modulys, is O(h?) ash — 0. For example, al =159 N =319,
andN = 639, the values gf are—0.0086,—0.0016, and-0.0004, respectively. To confirm
the behaviour of the least negative eigenvalue as the discretisation is refined, the op
L was discretised using a pseudospectral method with nodes at scaled Chebyshev—-C
Lobatto pointgj = —L cogzj/N), j =0,1,..., N;atN =70 we obtain a zero eigenvalue
to four decimal digits. Finally, reverting to second-order central differences, the eigenve
associated witlw at N = 159 is shown in Fig. 8a, and the vect®t )y, is shown in Fig. 8b.

02

LA

014 L L s L s L L L N
-25 -20 -15 -10 -5 0o 5 10 15 20 25

FIG. 8. Tendency of(V;), to an eigenvector of,, corresponding to the eigenvalue with p =1, L =25,
andN = 159: (a) shows the eigenvector and (b) shoWsy,.
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Note that(V:)n is approximated by a suitably scaled version of the eigenvector. This confir
that(Vs)n is a close approximation to an eigenvectorgfcorresponding to the nearly zero
eigenvalue.

5. CONCLUDING REMARKS

We have shown that moving mesh methods based on equidistribution of arc-lengt
curvature are not suitable for simulating the travelling wave solution of Fisher's equa
over a reasonably large time interval. It has also been shown that moving mesh met
produce much better results if the monitor function is chosen to suit the properties of
differential equation and of the solution that is being computed. The preceding sec
has indicatedinter alia, that the solution is more sensitive to errors at the wave fro
than to errors at the back of the wave, and these properties give guidance on the |
distributions that might be required. Even when the monitor function is constructed v
care, the computed solution may be highly inaccurate if the selected moving mesh mett
inappropriate. We have shown that a MMPDE that contains a temporal smoothing parar
may be unsuitable if the parameter value is not consistent with the solution being compit
The MMDAE—which attempts to impose equidistribution at each time step—offersam
reliable approach for this strong reaction problem.

The experiments described here indicate that more needs to be done on the formu
and analysis of moving mesh methods for reaction diffusion equations. The combine
of moving mesh methods and the boundary conditions of Hagstrom and Keller [11] sh
be investigated. Here we have used central differences to approxigiatéhe convection
termxXuy. In situations like those arising in Fisher’s equation, where the mesh speed s |
near the wave, greater care may be needed in approximating this term. Li and Petzolc
have suggested that high order upwind approximations should be used to approximat
term.

APPENDIX

Here we consider the index of the differential-algebraic system defined by Egs. (2.4)
(2.11). To simplify the presentation we select the monitor function (3.2), avithl and
with smoothing omitted. Under these conditions, Eq. (2.11) assumes the simple form

Xi1—X) %+ Uip1 —U)?— (6 —X—)?— (Ui —Ui—?=0, i =1,2,...,N-1 (6.1)
The DAE defined by (2.4) and (6.1) is conveniently written as

u—Gx=F, (6.2)

0=H, (6.3)

whereH; denotes the left-hand side of Eq. (6.1). One differentiation of (6.3) with resp
tot leads to the system

(Hx + HG)x = —HF. (6.4)

If Hx + HyG is nonsingular near a solution trajectory then (6.4) gives an explicit expr
sion forx, andu may then be obtained explicitly from (6.2). It follows that the DAE is al
index 1 system if and only iflx + H,G is nonsingular (see [2, 12]).
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From (6.1) we obtain

OH;i /0Xi—1 = 2% — Xi—1) = 2051, say,

aHi /0% = —2(Xi41 — Xi—1) = —2(ai—1 + &),
OH;i /0Xiy1 = 2(Xi11 — X)) = 20,
dHi/oui_1 = 2(Uuj — Ui—1) = 261, say,

oH;i /oui = =2(Ujy1 — Ui—1) = —2(Bi-1 + Bi),
oH;/dui11 = 2(Ui41 — i) = 28.

(6.5)

If {xi}], is a strictly monotonic increasing sequence thinis diagonally dominant and
therefore nonsingular.
Also, G = diag(Gy, Gy, ..., Gn_1), Where

Uiy —Uima Bica+ B

G = . (6.6)
Xit+1 — Xi—1 o1+ o

SinceHy andH, are symmetric, it follows thatly + H,G is nonsingular if and only if
(Hy + HuG)™ = Hy + GHy is nonsingular. It is readily seen that

—2(Bi—1+ B (i +ai),  j =i,
2Bia(Bi—1+ B/ (i1 + i), j=i-1,

[GHulij = . (6.7)
2Bi (Bi—1+ Bi) /(i +ap),  j=i+1,
0, li—j|>1
From (6.5) and (6.7) we obtain
—2(@i_1+ai) —2Bi-1+ B/ (i1 + ), |=Ii,
[Hy + GHulj = 20ti_1 + 2B _1(Bi—1 + Bi) /(o —1 + ), J =f -1 6.8)
20 + 2Bi (Bi—1+ Bi)/(¢i—1 + i), i=i+1
0, lih—j|>1

If R:= S(Hyx + GH,), where
1.
S= Edlaqao + o1, 01+ Ao, ..., 0N_2 + AN_1),

thenSis nonsingular, providegx; }\, is a strictly monotonic increasing sequence. Unde
this assumption, it is sufficient to show thRtis nonsingular. The elements in rovof R
are given by

[Rlii = —(Xit1 — X% — (Ui1 — Uj_1)?, (6.9)
[Rlii—1 = (X —Xi—1) Xi+1 — Xi—1) + (Ui — Ui—1)(Uj41 — Uj_1), (6.10)
[Rliit1 = Xigr — X)) Ki41 — Xi—1) + Uis1 — W) (Uiy1 — Ui_1). (6.11)

It is convenient to defineR]; i, [R]ii-1 and [R]ii+1 by (6.9)—(6.11) for ali =1, 2, ...,
N — 1. We now show thaR is diagonally dominant. Four cases are considered:



NUMERICAL SOLUTION OF FISHER’S EQUATION 745

(@ Ri-1>0andR ;1 > 0foranyi=1,2,..., N — 1. For this value of, |R ;| =
Rii—1+ Riit1.
(b) Rj_1 <0andR ;1 <Oforanyi =1,2,..., N — 1. Here,

IRGi—1] + IRi1l = =41 — X —1)? — (Ui11 — Ui_1)? < O, (6.12)

which is a contradiction, so this case does not arise.
(¢) Ri-1<0andR ;1 >0foranyi =1,2,..., N — 1. In this case,

IRi-1l + Riita = =X — Xi—1)(Xi+1 — Xi—1) — (Ui — Ui—2)(Uj41 — Ui—1)
+ Xiv1 — X)) (X412 — Xi—1) + (Uit — W) (Uiy1 — Ui—1)
= —(% — %1% — (Ui —Ui—1)* + (Xi11 — %)? + Uit2 — Up)®
=0, using(6.3).

(d Ri—-1=>0andR ;1 <0 for anyi=1,2,..., N —1. This case is analogous to
case (c).

It follows from (a)—(d) that
IRl = IRyt + Rl foralli=1,2...,N-1, (6.13)

and this establishes thRt= S(Hyx + GH,) is diagonally dominant and, thus, nonsingulat
Hence Hyx + H,G is nonsingular, and the DAE (6.2)—(6.3) is an index 1 system.
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